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.ﬁﬁ Some homogeneous elastic materials are capable of sustaining finite
?h' . equilibrium deformations with discontinuous strains. For materials of
&ﬁ this kind, the energetics of isothermal, quasi-static motions may

iﬁu V differ from those conventionally associated with elastic behavior.

“tf When equilibrium states involving strain jumps occur during such

) motions, the rate of increase of stored energy in a portion of the

3” body may no longer coincide with the rate of work of the external

%g forces present. In general, energy balance now includes an additional
h?, effect due to the presence of moving strain discontinuities. As a

consequence, the macroscopic response of the body may be dissipative.

tgé This fact makes it possible to model certain types of inelastic

;f behavior in solids with the help of such "unstable" elastic materials;
325 see, for example, Abeyaratne and Knowles (1987a,b,c).

Ad

2
,:, The purpose of the present note is to illustrate behavior of this
§ § kind with the help of an especially simple example involving the
- extensional deformations of a bar treated as a one-dimensional

continuum. The bar is composed of an unstable elastic material of the

<,
£ 8 8. 4
-

; type considered by Ericksen (1975). We show that the force-elongation
gr relation (or "macroscopic response”) of the bar during a quasi-static
:? motion may be viscoelastic when a moving strain jump is present, even
;:: though the underlying constitutive law is elastic in the sense that,
:EE at each particle, the present stress is determined by the present
::j strain.

L

V)
ron Consider an elastic bar which, in the reference configuration,
Eié occupies the interval (0,L] of the x-axis and has constant
@, cross-sectional area A. In a deformation, the particle at x is carried
f ' to y = x + u(x), where v is the displacement. We assume that u is
% \ continuvous on (0,L], and that u'(x) exists and is continuous for 0 £
:f € s and s £x <L, but u'(s+) and u’'(s-) may differ; here 0 < s < L.
“; If x # s, the strain at x 1s e(x) = u'(x). It is required that &(x) >
->
u\,

.
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-1 for x # s, so that the mapping x #» y is invertible. We take the

left end of the bar to be fixed, so that u(0) = 0,

Suppose that the material is elastic with strain energy per unit

reference volume W(e). The nominal stress response function is then
ole) = W'(e), (L

so that the nominal stress in the bar at particle x is o(x) = ole(x)).

We shall be concerned with the special "trilinear” stress response

function given by

r HE ) -1 (O S 8” E]
9 Hem <y <
ole) = t—_——;—(tm*- £M - 2¢) , IM = £ a tm , (2)
m M
p(e-—ao), smSt:(oo.

The graph of 8(:) is shown in Figure 1, where the meanings of the
constants u, &y, T and £, = £y * £, are made clear. One may think of
the material as exhibiting three phases: the first phase is represented
by the rising branch of the stress—strain curve through the origin, the
third phase corresponds to the final rising branch, and the declining
portion of the curve represents an unstable intervening second phase.

In the present case, the first and third phases are both associated

with the same modulus u.

In the absence of body force, the bar will be in equilibrium if the

nominal stress o(x) satisfies
o(x) = o = constant , 0 S xS L. (3)

A deformation with a strain discontinuity of the kind described
above will correspond to an equilibrium state if it is of the form
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1
uix) = (4)
£x + (214— tz)s , s $SxSL

where the strains £, and t, are constant and such that

oe) =o(e,) =0 . (5)

We shall be concerned here only with those deformations of the form (4)

in which
e 55M+eo, (6)

so that only phases one and three are represented. For an equilibrium

state of this kind, the total energy stored in the bar is
E = AW(sl)s + AW(ez)(L -s) . (7

Now suppose that the bar is in a quasi-static motion during which,
at each instant t, the displacement u(x,t) is of the form (4), with s
= s(t), e, = Ez(t) and £, = tz(t). The restrictions (5) and (6) are to
hold for all t, with ¢ = o(t). Assume that s(t), el(t) and tz(t) are
continuous and piecewise continuvously differentiable in t. During
such a motion, the energy E(t) is given by (7) with £, ¢_, and s now

1 2
functions of time. A direct calculation gives

E(t) = F(£)3(t) + A[-f(t)]s(t), (8)

where F(t) = o(t)A is the force,

é(t) = u(L,t) = ct(t)s(t) + cz(t)(L ~ s(t)) (9)

is the elongation of the bar at time t, and f(t) is given by
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f(t) = Wle_(t)) - Wle (t)) - o(t)(e_(t) -~ £ (£)). (10)
2 1 2 b

The first term on the right in (8) is the rate of work of the torce
acting on the end x = L of the bar. The second term may be interpreted
as the rate of work done by a fictitious "traction” f(t) in moving the
strain discontinuity at x = s(t). For the stress-strain relation (2},

one finds using (1),(6) and (10) that

f(t) = - too(t). {(11)

If the motion takes place isothermally, the second law of
thermodynamics requires that E - Fd be nonnegative; thus the motion

must be such that

f(t)s(t) 2 0. (12)

Because of (5) and (6), specifying the history of the stress acting

on the bar determines ci(t) and cz(t), but leaves undetermined the ﬂ
location s(t) of the strain jump, and therefore the elongation history

8(t) of (9) as well.

In formulas (7} and (9), one may regard s as an "internal variable"
akin to those arising in microstructural theories of plasticity; see,
for example Rice (1971) . This suggests that, by analogy with such
theories, the constitutive description of the material should be
augmented by relating the fictitious traction f(t) to the velocity of
the moving discontinuity s(t). One form that such a "kinetic relation”

might take is
s(t) = V(f(t)) , (13)

vhere V is a function determined by the material. Using (1i1), one

infers from (13) that




DT .?;4:.,;.‘

s(t) = V(=e _o(t)) . (14)

[}

{ﬁ Note from (12) that every admissible V must be such that V(f)f 2 O.
hy/

0 Let y(t) = 8(t)/L be the relative elongation of the bar. The

relation between vy and F ~ the macroscopic response of the bar - may

{ now be determined as follows. Using (2) and (6) in (9) yields

ol

4

¢

! §(t) = co[L-s(t)] + o(t)Ll/pu , (15)

j from which, with the help of (14), one finds the nonlinear

: viscoelastic relation

q Y(t) = B(t)/pA = £ V(-e F(t)/A)/L . (16)

'}' If in particular the kinetic response function V is specified through
:: V(f) = f/v , where v is a positive constant, (13) provides a linearly
LA )
: "viscous" kinetic relation between f and s. The macroscopic response
: relation (16) specializes to

'f - 2

o y(t) = F(t)/pa + eZF(t)/vLA . (17)

AN

3] This is precisely the form of the response relation characteristic of
Q the so-called "Maxwell" spring-dashpot model of elementary

o

‘ viscoelasticity. Other forms of macroscopic response can be obtained
*j by replacing (13) by a more general kinetic relation.

o
r A more extensive discussion of the one-dimensional theory of
quasi-static motions of bars composed of unstable elastic materials

', may be found in Abeyaratne and Knowles (1987c).
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